Optical activity in twisted solid-core photonic crystal fibers.

نویسندگان

  • X M Xi
  • T Weiss
  • G K L Wong
  • F Biancalana
  • S M Barnett
  • M J Padgett
  • P St J Russell
چکیده

In this Letter we show that, in spectral regions where there are no orbital cladding resonances to cause transmission loss, the core mode of a continuously twisted photonic crystal fiber (PCF) exhibits optical activity, and that the magnitude of the associated circular birefringence increases linearly with twist rate and is highly reproducible. In contrast to previous work on twist-induced circular birefringence, PCF has zero linear birefringence and an on-axis core, making the appearance of circular birefringence rather unexpected. A theoretical model based on symmetry properties and perturbation theory is developed and used to show that both spin and orbital angular momentum play a role in this effect. It turns out that the degenerate left- and right-circularly polarized modes of the untwisted PCF are not 100% circularly polarized but carry a small amount of orbital angular momentum caused by the interaction between the core mode and the hollow channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Optical Properties in Hexagonal Index-guiding Photonic Crystal Fiber for Optical Communications

Waveguides with low confinement loss, low chromatic dispersion, and low nonlinear effects are used in optical communication systems. Optical fibers can also be employed in such systems. Besides optical fibers, photonic crystal fibers are also highly suitable transmission media for optical communication systems. In this paper, we introduce two new designs of index-guiding photonic crystal fiber ...

متن کامل

A Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers

In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...

متن کامل

Photonic Materials and Devices

Our recent advances in solid-state optoelectronic materials and devices will be reviewed. In the area of glass optics, fabrication of novel microstructured and multi-core fibers and their use in realizing single mode lasers will be summarized. In organic and plastic optics, photorefractive polymers for 3D display applications and nonlinear optical polymers for high speed modulators in RF photon...

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

Phase Sensitivity to Acoustic Pressure of Microstrustured Optical Fibers: A comparison Study

Recently, photonic crystal fibers (PCFs) have attracted many researchers because of their unique properties, and design flexibility that can’t be realized by conventional fibers. One of the fruitful areas of research is the optical fiber hydrophone. In this paper, the finite element solver (FES), COMSOL multiphysics, is used to study and compare the response to acoustic pressure of a hollow-cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 110 14  شماره 

صفحات  -

تاریخ انتشار 2013